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The field of research considering mechatronic bearings has been extended recently, although it shall still 

be considered quite undeveloped and innovative. Studies in this field consider three main possibilities of 

rotor-bearing units enhancement: design enhancement (textured surfaces, anti-friction coatings, tilting 

pads), lubricant properties enhancement (polymer additives, magnetorheological fluids), and introduction 

of intellectual technologies to the conventional designs. The latter is of the most promising trends, as the 

functionality of mechatronic bearings is significantly wider, that that of conventional hydrodynamic or 

hydrostatic bearings. So, the present research has been implemented in hopes to extend the theory of 

mechatronic bearings design further by means of presenting the results of modeling and experimental 

investigation of active thrust fluid-film bearings with fixed pads. 

Investigation in the field of rotor’s dynamic behaviour control in fluid-film bearings is carried out in the 

following fields: study of the possibility of profile adjustment of a gap between a rotor and a sleeve or a 

thrust disk of a bearing, e.g. tilting-pad and some foil bearings [1, 2]; study of the possibility of application 

of lubricants with adjustable parameters such as viscosity or density, e.g. ferromagnetic fluids [3, 4]; and 

study of hybrid fluid-film bearings [5, 6], where rotor’s position can be adjusted by means of electrohydraulic 

devises like servo valves.  

Numerical simulations of passive hybrid thrust bearings are a base for further modelling of active hybrid 

thrust bearings, the operational principle of the latter is as follows: a pump, located in the tank with the fluid 

(water, oil, etc.), supplies the lubricant into the housing of the bearing, which supports the rotor in the axial 

direction. The pressure data is acquired with the pressure sensors. The data on the present position of the 

rotor is acquired with a proximity sensor. The signal from the proximity sensor is then processed and 

compared with the set point value of the desired rotor’s position, and necessary adjustments are 

implemented by means of changing the supply pressure using a servo valve.  

Modeling of active thrust fluid-film bearings is based on determination of axial force in the fluid film, a result 

of joint solution of the Reynolds equation (1) and energy equation (2): 
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where Фr, Фφ and Фs – radial, circumferential pressure and shear flow factors accordingly which are 

determined as described in [7,8], h – nominal film thickness, hT – average film thickness considering elastic 

deformation due to asperity contact [7, 8], Kφ and Kr – viscosity coefficients determined according to [9], p 

– pressure, µ - dynamic viscosity of the lubricant and is a function of temperature: 
)( sTT
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  , λ – 

temperature/viscosity coefficient, µin – viscosity of the supplied medium, Ts – temperature of the supplied 

lubricant, ω – angular speed of the shaft, σ – RMS roughness of the surfaces of the rotor’s, Vy – velocity of 

the shaft in the direction of film thickness.  

The solution of (1) in the present case requires the following boundary conditions for a single pad: 
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where pa – ambient pressure, ps – supplied pressure, i.e. pressure in the feeding chamber, αp – angular 

extent of a single pad. 

The pressure distribution in a fluid is greatly influenced by the temperature of the fluid and the surrounding 

surfaces. The temperature distribution is governed by the energy equation, which in many cases has to be 

solved for a three-dimensional flow. However, for relatively low rotational speeds as shown in [10] a two-

dimensional energy equation gives quite accurate results. The energy equation for the present case is as 

follows:  
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where ρ – fluid’s density, cp – specific heat of the fluid, T – temperature. 

The solution of (2) requires the following boundary conditions: 
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where Ts – temperature of the supplied lubricant. 

Numerical solution of (1) and (2) yields pressure and temperature distribution over the surface of the rotor’s 

disk. The procedure is implemented in a series of iterations until a load capacity convergence condition is 

met. 

Additional expressions allow consideration of the influence of a specific control system.  

In order to verify the obtained numerical results, a series of experimental studies has been carried out, and 

based on the obtained comparison results, some conclusions could be drawn to form a number of 

recommendations regarding the design on active hybrid thrust fluid-film bearings given a specific 

application. 
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